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ABSTRACT

In this paper we extend the dynamic time warping (DTW)
algorithm, widely used in automatic speech recognition (ASR),
to a dynamic plane warping (DPW) algorithm, for application
in the field of optical character recognition (OCR) or similar
applications. Although direct application of the optimality
principle reduces the computational complexity somewhat, the
dynamic plane warping (or image alignment) problem is
exponential in the dimensions of the image. We show that by
applying constraints to the image alignment problem, e.g.,
limiting the class of possible distortions, we can reduce the
computational complexity dramatically, and find the optimal
solution to the constrained problem in linear time. A
statistical model (planar hidden Markov model - PHMM)
describing statistical properties of images is then proposed.
The PHMM approach was evaluated using a set of isolated,
hand-written digits. An overall digit recognition accuracy of
95% was achieved. We expect that the advantage of this
approach will be even more significant for harder tasks, such
as cursive writing recognition and spotting.

1. INTRODUCTION

This work was motivated by the realization that many open
problems in OCR are analogous to known problems in speech
recognition. For example: the elastic distortions of hand-
written characters are analogous to temporal distortions in
speech signals; the segmentation problem in recognition of
cursive handwriting is analogous to speech segmentation and
endpoint detection in continuous speech recognition; the
dependence of the written characters on their adjacent
neighbors is similar to the coarticulation effect in speech; the
use of basic units (characters) that compose the words is
analogous to the use of sub-word phonetic unit modeling in
large-vocabulary ASR; the use of grammars for constraining
the possible sequences of characters and/or words is important
in both applications.

The standard solutions to these alignment problems in ASR,
including such methods as template matching! or hidden
Markov modeling” (HMM), are all based on the application
of dynamic programming principles. The purpose of dynamic
programming time warping is to reduce the intra-class
variability of spoken utterances, caused by temporal
distortions, by optimally matching them to a template or a
model. Generalizing this algorithm to the planar case allows
us to approach the above class of OCR problems in a manner
similar to the one used for ASR.

2. DPW PROBLEM FORMULATION
:1'he goal of the DPW is to align a 2-dimensional reference
image,
Gr={gr(xy):x € Z',y € Z*,(x,y) € Ly, v, .8x() € G c R"}
to an elastically distorted test image,
G={gxy):xe Z'ye Z* ,(x,y) e Lxy.g(~) e G cR"}).

Here an (x,y) pair describes pixel location by horizontal and
vertical coordinates, and Ly denotes a rectangular discrete
lattice, i.e., a set of pixels Ly y={(x,y) | 1<x<N, 1sysM ).

The idea of planar warping is to map the test lattice to the
reference one through a mapping function F:

x| _p[x]_ |Fxxy)
[;]‘F G- [F,(x,y)]'
such that the distortion

X v
D(Gr,G)=D= Y, ¥, d(grx.3).8(x.y))
=ly=1

PN
EMTs
is minimal, subject to possible constraints like global boundary
conditions:

Fr(1,y)=1; FxX,y)=Xg; Fy(x, D)=1; Fy(x,Y)=Yg ; 1)
and local monotonicity constraints, such as
AF o =Fy(x+1,y)=F(x,y)20; AF,,=F,(x,y+1)-F,(x,y)20 . (2)

We denote by F the set of all admissible mappings that satisfy
the above conditions. Although we limit the discussion in this
paper to constraints (1) and (2), the treatment of other kinds of
constraints is similar.

3. THE GENERAL APPROACH
The complexity of the problem of finding the optimal warping
function is exponential, namely O((XzYz)¥). This complexity
can be reduced, as in the one-dimensional case, by
generalizing the optimality principle®. We will use the
following definitions:
1. Define © to be a set of Ny test sub-shapes {8,}, where each
test sub-shape is a set of pixels {(x,y)} satisfying the following
conditions:

 Nr is polynomial in {X,Y},

¢80, > 0,1, 1SnSNp

¢ 80,=((xy) | @y) € 0,and(x,y)¢ 0, ;} has a
mono-dimensional parametrization,

natural
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* Oy, =Lxy

where 6, is the empty set. In particular, we choose 6 to be a
set of Y rectangles, 6,=Ly,, n=1, -- - Y. In this case A8, are
pixels of the n-th row.

2. Define @ to be a set of admissible warping sequences
O={¢; | 1<isN ¢}, where ¢; is a sequence of X reference pixels
0 ={G1 ) - -« s Eaadi)s - - - » Gx.¥x)) that meets the following
conditions:

6; C Lyy vy F=1, T=Xgp: ¥ 255, 152X,

This definition of the set ® depends on the particular choice of
the set © and the constraints (1) and (2). @ is constructed to
contain all possible warping sequences of each A6, that satisfy
the constraints.

From this definition it is clear that for each i, 1< EI_T,, and

I
X,

F and any n, 1Sn<Y, there

for each n, 2sn<Y-1, there exists F € F such that
for 1sx<X. Also for each F e
exists ¢; € ® such that [;,] =F [’_] for 1sxsX. The
cardinality of @ is Ng=O((Xg¥r)¥).

3. Each sequence ¢; ¢ © determines a subset A;c® of
sequences

Ai=(0c: YiSHE, 152 <X).

Whenever we consider ¢; to be a candidate warping sequence
for the n-th row of the test image, the preceding (n—1)-th row
can be matched only with a warping sequence in A; in order to
meet the vertical monotonicity condition.

4. Denote by F; , a set of sub-mapping functions from the n-th
test rectangle ©,, 1<a<Np, that satisfy the monotonicity
conditions, boundary conditions, and match the n-th row of the
test A9, with ¢;:

~i
forany F e F;, k}{l=F [:] 1SxX.
X,

Using these definitions we are ready to describe the DPW
algorithm.

In the »-th iteration of the algorithm, 2<n<Y, we assume that
the optimal warpings of the (n—1)-th rectangle of the test
image g(x,y), (x,y) € 6,1, that match the (n-1)-th test image
row g(x,y),(xy) € A8, ; with the warping sequence ¢; are
known for 1<isNg. Each optimal warping is defined by a
mapping F;,-1 € F;,_1 and a distortion D; ,_;, such that:

X a-1

Y Y d(grxy)e®xy));

=1y=1
D
X n-1
Fip-y=arg min > Y dgrGEy).exy)) -

FeFig =1y=1
G0
Now we can find the optimal warping of the n-th test

rectangle, g(x,y), (x,y) € 6,, that matches the a-th test image
row to to the j-th warping sequence, gp(x.y), (x.y) € ¢;:

D;,_1= min
' € Fin-1

X
Djy=_min ZE d(gr®5)8x.y))=

FeFin xo1y=i
-t
X n-1
X Z d(gr(xy).exy))+ Zd (R G508 xn))=

EI:I) x=1

= min D, 1+Zd(gx(xi.yi).g(x,n)) 3
x=1
[ 1 e A,

The optimal mapping F;, is

= min _min
i FeFip
'E

_Fiaaxy) for (xy) € 8,y
F;_.(x,)')—{ (;{';;) for (x,y) € AB,

where i is the argument minimizing (3). Constraining the
minimization in (3) only to those i such that ¢;€ A},
guarantees that the vertical monotonicity condition is satisfied.

To complete the n-th iteration, the optimal warping of the n-th
test rectangle has to be found for every warping sequence
¢; € @, thus requiring N¢ X operations.

The algorithm is initialized for n=1 by setting

):d(g(x DgrGEa3x)) 87 Gx=1),
x=1

where 8() is the Kronecker delta function. The algorithm is
stopped after n=Y, when the optimal warpings F;y are found
for all i for which A;=®, thereby requiring a total of
O(YXNg) computations. The global optimal warping
function Fpimy is chosen among these warpings as the one
that produces the minimal distortion:

F,

optimal =F ¥ s f=a’8l,x_i:°Di,y‘

4. CONSTRAINING THE WARPING PROBLEM

Even though applying the optimality principle reduces the
complexity of the planar warping, the computation is still
exponential. Therefore the algorithm is impractical for real-
size images Further reduction of the computational complexity
can be achieved in two different ways:

1. Finding a sub-optimal solution to the warpmg oblem.
Examples of sub-optimal procedures can be found in ¥ and ¥,
where the images are divided into small sub-images for which
finding the optimal warping function is possible.

2. Redefining and simplifying the original warping problem.
The idea here is to limit the number of admissible warping
sequences in @ in such a way that an optimal solution to the
constrained problem can be found in polynomial time. The
additional constraints used are not arbitrary, but instead refiect
the geometric properties of the specific set of images being
compared. For example, we can constrain the possible
mappings to only to those for which the vertical distortion is
independent of the horizontal position. In this case
Ng=0®XY), and the admissible warping sequences ¢ € ¢ are
naturally grouped into Y subsets. The m-th subset, A,, contains
all those sequences ¢; for which 5.=m, 1sxsX. For all

0; € Apy Aj= UM, i.e, the satisfaction of the vertical

monotonicity condition is independent of a particular
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horizontal warping. This allows further reduction of
computational complexity as follows. We define

Dm.ngj ::‘?A“D],lt Fm.u=Fi,n. (4)
where i is the argument that minimizes (4). The recursion
relation (3) can now be rewritten in terms of these quantities
as:

- X n-1
D IE i i i ~’~ ¥ 1,
. i=wk$iF=m£-n E,IE d(grG.y).8 0 )))+
R
* ) oin, 2 Zd(n(ri,yx).g(x n))= ®
j €

= i, Dha-t +4Dos
The minimization of the second term in (5), corresponds to a
single-dimensional warping (i.e. an algorithm similar to DTW
can be used) and requires O(XXg) calculations. Denote by f,,»
the optimal mapping that alignes the n-th row of the test image
to the m-th row of the reference image constrained by (1), (2)
and minimizing ADm,s. Then

F“. _{Fina forxy)e 6,

fm,u for (x,y) € A8, *
where i= i D 1.
' a’glfsfk“gu k,m -1

The optimal mapping is Fq,,,,-,,,,,,=l""y‘_y, and the complexity of
its computation is only O(YzYXRX)!

5. PLANAR HMM

In this section we provide a statistical interpretation and
generalization of the DPW approach.

The planar HMM (PHMM) is a composite source, comprising
a set, s, of N=XgYy states s={(x,y), 1sx<Xp, 1<ys¥z}. Each state
in s is a stochastic source characterized by its probability
density Pzj5(g) over the space of observations g e G. It is
convenient to think of the states of the model as being located
on a rectangular lattice Ly,y,, corresponding to the reference
lattice of DPW. Similarly to the conventional HMM, only one
state is active in the generation of the (xy)-th image pixel
g(x,y). We denote by s(x,y) € s the active state of the model
that generates g(x,y). The joint distribution governing the
choice of active states and image values has the following
Markovian property:

P(g(xy)s(ry) | g(X, 1iy-1), g (1x-1,y), s(1X, 1:y~1),s (1x-1,y))=

=Py | s(x.y)) P(s(xy) | s(x—1,5)s (xy-1))=
=Py (8x3)) P(sxy) | sx-1,y).s (x,y-1))=
where:
g(1X,y-1)={g(x.y):(xy) € Rxy1},
g(x-1,y)={g(1,y), - - g x-Ly)},

and s(1:X,1:y-1), s(1x-1,y) are the active states involved in
generating g(1X,y-1), g(lx-1,y), respectively. The joint
likelihood of the image G=g(1:X,1:¥Y) and the state image
S=s(1:X, 1:Y) can be written as

P@G.5)= anx(x.y)(g(l )

x=1y=1
Y X

LAY IIa”(,_l 1.t 1) H":u.y—l) Ly I'EI_IZA:&—I sy -1),5653)
o

where
AGpamm=P(s@y)=(mn) | sG-1y)=G7),sxy-1)=k1)),
afl . ommy =P (s, D=(mn) | sx-1,1)=G)),
aln.mm =P (s(1,y)=(mn) 1 s(Ly)=(&D)),
m;=P(s(L,)=G))

The state matrix S that best explains the observable G can be
estimated by § -argmaxP(G S), and then observation likelihood

P(G)is approxxma.ted as P(G) PG, S)
Therefore, the problem of finding S and l;(G) is that of
minimizing:

Xy
L=y 3 -logPyxy)(g(xy))-logmq,1y
x=1y=1

- E log afe-1,13,5051) — Z logaluy-n.sam +

x=2 y=2
X Y
=2 YAsa-1y)sGy-Dstny =D+C
x=2y=2

over all possible state matrices S. Again, the problem is of
exponential complexity, since there are (XgYg)*' different
state matrices. This complexity can be reduced by applying
the optimality principle and by restricting the model
parameters analogously to the way we constrained the DPW
problem, as explained in the provious sections.

6. EXPERIMENTAL RESULTS

The PHMM approach was tested on a writer-independent
isolated handwritten digit recognition application. The data we
used in our experiments was collected from 12 subjects (6 for
training and 6 for test). The subjects were each asked to write
10 samples of each digit. Each sample was written in a
fixed-size box, therefore the samples were naturally size-
normalized and centered. Each sample in the database was
represented by a 16x16 binary image.

Each character class (digit) was represented by a single
PHMM where the state matrix § was restricted to contain
every state of the model, i.e., states could not be skipped. All
models had the same number of states. Each state was
represented by its own binary probability distribution, i.e., the
probability of a pixel being 1 (black) or O (white). We
estimated these probabilities from the training data with a
generalization of the Viterbi training algorithm.”! The
recognition was performed by assigning the test sample to the
class k for which P,(G) was maximal.

Table 1 shows the number of errors in the recognition of the
training set and the test set for different sizes of the models.
It is worth noting the following two points. First, the test
error shows a minimum for Xz =Yz =10 of 5%. By increasing
or decreasing the number of states this error increases. This
phenomenon is due to the following:

1. The typical under/over parametrization behavior.

2. Increasing the number of states closer to the size of the
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modeled images reduces the flexibility of the alignment
procedure, making this a trivial uniform alignment when
Xg=Yg=16.

Also, the training error decreases monotonically with
increasing number of states up to Xg=Yg=16. This is again
typical behavior for such systems, since by increasing the
number of states, the number of model parameters grows,
improving the fit to the training data. But when the number of
states equals the dimensions of the sample images, Xz =Yg =16,
there is a sudden significant increase in the training error.
This behavior is consistent with point (2) above.

Number of states | Recognition Errors
Xg=Yz Training Test
6 78 82
8 36 50
9 35 48
10 26 32
11 21 38
12 18 42
16 36 64

TABLE 1. Number of errors in the recognition of the
training set and the test set for different size of
the models (out of 600 trials in both cases)

Figure 1 shows three sets of models with different numbers of
states. The states of the models in this figure are represented
by squares, where the grey level of the square encodes the
probability P(g=1). The (6x6) state models have a very coarse
representation of the digits, because the number of states is so
small. The (10x10) state models appear much sharper than the
(16x16) state models, due to their ability to align the training
samples.

7. SUMMARY AND DISCUSSION

In this paper we demonstrated how the DTW algorithm and
HMMs, extensively used for speech recognition, can be
generalized to OCR. We found two key problems in this
generalization:

1. In order to use the optimality principle here, the set of all
possible warping sequences satisfying horizontal constraints
must be defined. For the n-th row of the test image every such
sequence has to be considered as a candidate warping. The
vertical constraints are taken into account by limiting the set
of possible warping sequences of the previous (n~1)-th row. In
this way the complexity of computation was reduced from
O(XeYH ) to O(YX (WrXg)").

2. We show that by restricting the original warping problem
by limiting the class of possible distortions (for example,
assuming that the vertical distortion is independent of the
horizontal position), we can reduce the computational
complexity dramatically, and find the optimal solution to the
restricted problem in linear time. A statistical model (the
planar hidden Markov model - PHMM) was developed to
provide a probabilistic formulation to the planar warping
problem. The restricted formulation of the warping problem
corresponds to PHMM  with constrained transition
probabilities. The PHMM approach was tested on an isolated,
hand-written digit recognition application, yielding 95% digit
recognition. Further analysis of the results indicate that even
in a simple case of isolated characters, the elimination of
planar  distortions  enhances recognition performance

significantly. We expect that the advantage of this approach
will be even more valuable in harder tasks, such as cursive
writing recognition/spotting, for which an effective solution
using the current available techniques has not yet been found.

)

Figure 1. Digit models with a different number of states (a-
6, b-10, c-16). The grey level encodes the value of
P (g=1) for each state.
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