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ABSTRACT
In this paper we explore the efficiency of various ways of ex-
pressing the form and meaning of natural language utterances as
context-free grammars. We concentrate on the top-down
parsing strategy employed in SpeechWorks 6.5, a strategy
common to many systems. As with other search-based parsers,
the key to efficiency is to limit the uncertainty of the parser at
any given stage by reducing non-determinism in the grammar.
Here we study the effects of different expressions of the same
grammar in terms of efficiency.  We also describe a methodolo-
gy for transforming a source grammar into a more efficient ex-
pression of the same forms and meanings.

INTRODUCTION
Sophisticated spoken dialogue applications rely on the ability
to interpret a wide range of user utterances.  The usual result is
a complex natural language grammar expressing both what
someone can say to the system and what the system will un-
derstand them to mean.  Complex grammars can lead to bottle-
necks in processing if they are not expressed in an efficient
way.  This paper concentrates on the notion of parsing as
computation in which the programs are grammars.  As with
other forms of programming, grammars expressing the same
thing can be encoded in more or less efficient forms.  As with
most other problems in spoken language recognition and under-
standing, the fundamental principle is the reduction of non-
determinism.  In this paper, we will show how this can be ac-
complished in a principled way.
     We begin with a survey of the SpeechWorks architecture for
recognition and interpretation.  Next, we provide the standard
algorithm for top-down search-based parsing.  We briefly dis-
cuss the role of semantic interpretation, and then move on to a
description of how grammars can be optimized for top-down
search-based parsing.  We provide empirical evidence in terms
of comparative run times for simple, equivalent grammars.  We
conclude with a discussion of general techniques for optimizing
grammars for top-down search-based parsers.

RECOGNITION AND PARSING PASSES
The SpeechWorks 6.5 architecture [1] for extracting meaning
from user utterances involves three passes, including one acous-
tic and statistical language model pass and two context-free
grammar-based passes.

First Pass: Decoding  Operates forward to construct a word
graph.  Scores are determined by successively refined acoustic
models and a bigram language model.

Second Pass: Parsing  Operates backwards to extract parses
for the n-best word string hypotheses that are accepted by a
specified context-free grammar.

Third Pass: Interpretation  Evaluates semantics for parses
generated in the second pass.  Grammars are allowed to re-score
hypotheses on the basis of semantics.1  Word strings with
equivalent semantics are conflated before confidence scores are
computed.

The final result to be processed by the dialog engine is a ranked
list of semantic hypotheses in the form of key-value pairs.
Subsequent processing can re-score these hypotheses further
using context-specific information, such as user profiles, time
of day, availability of requested information, etc.

CONTEXT-FREE GRAMMARS
The context-free grammar paradigm has been thoroughly stud-
ied in the formal languages and automata theory literature (for
example, see [2] for a range of definitions and theorems).  A
context-free grammar is essentially a finite collection of phrase
structure rules.  More formally, we assume a set Word of
words (often called terminals), a set NonTerminal of non-
terminals, and a finite set Rule of grammar rules, where each
grammar rule is of the form (C => X1 … Xn) where C is a non-
terminal and each of the Xi is either a non-terminal or a word.
     Each grammar defines a set of parse trees.  The set of trees,
Tree, is defined to be the least set such that Word ⊆ Tree and
such that [C T1 … Tn] ∈ Tree if C ∈ NonTerminal, n ≥ 0,
and T1,…,Tn ∈ Tree.   For a tree [C T1 … Tn], the non-
terminal C is said to be the root.  The yield of a tree is defined
by yield(w) = w if w is a word, and yield([C T1 … Tn] =
yield(T1) … yield(Tn); this is essentially the sequence of words
appearing in the tree read left to right.  A parse tree is a tree
every node of which was derived by a rule.  More formally, a
tree [C T1 … Tn] is a parse tree if   (C => root(T1) … root(Tn))
is a grammar rule and T1,…,Tn are themselves parse trees or

                                                                
1 This includes rejection as a specific instance.  Examples include
preferences for dates near a particular target such as today, rejecting
invalid zip codes, invalid credit card numbers with failed checksums,
etc.
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single words.  If we take the yields of all of the parse trees for a
grammar rooted at a given non-terminal C (often called the start
symbol or root category), we have what is known as  a context-
free language (a particular kind of  formal language).
      
PARSING
Parsing is essentially the task of determining for a given string
of words what the valid parse trees are with that string as yield.
Obviously, only strings in the language will have parse trees,
and thus parsers can be used to determine whether a string is in
the language of a grammar.
     Top-down search-based parsing (also known as recursive
descent parsing) is a widely used method for parsing both
computer languages [3] and natural languages [4].  The primary
difference between computer languages and natural languages is
that natural language grammars typically admit ambiguity.  A
typical kind of ambiguity involves attachment of modifiers, as
in the contrast between the attachment of the prepositional
phrases in the following pair of trees that yields the string she
saw the boy with the telescope:  [S [NP she] [VP saw [NP the
[N [N boy] [PP with the telescope]]]]]] versus [S [NP she] [VP
[VP saw [NP the [N boy]]] [PP with the telescope]]] (meaning in
the first case that the boy had the telescope and in the second
case, that she did).
     The simplest way to define any search-based algorithm is to
provide the search space (see [4], for example).  A search space
is characterized by a mapping from an input to a start state, a
collection of final states, and a transition function that takes you
from one state to another.  For top-down search-based parsing,
the states represent how much of the input string is left and
which non-terminals need to be found.  Suppose we have an
input string Ws that we are trying to parse into a tree rooted at
non-terminal S (the start symbol) with respect to a given
grammar.  Each state in the search space will be of the form Ws
/ Cs where Ws is a sequence of words and Cs is a sequence of
non-terminals.2   The search space is:3

Start State:  Ws / [S]
Final State:  [ ] / [ ]
Expand:   Ws / [C0 | Cs]  => Ws / [C1,…,Cn|Cs]
             [if C0 => C1,…,Cn a rule of the grammar]
Match: [W | Ws] / [W | Cs] => Ws / Cs

                                                                
2  We use the Prolog notation for lists, where [W|Ws] is a list whose
first element is W and where Ws is a list consisting of the remaining
elements in the list.  For instance, the list a,b,c would be represented
as [a | [ b | [ c | [ ] ]]] where [ ] is the empty list containing no ele-
ments.  We will also write [a,b,c] and [a, b | [ c | [ ]] for the same list.
3  SpeechWorks’ parser actually operates right-to-left rather than
left-to-right, but we adopt the usual directional convention here;  the
empirical data for left and right recursion are also reversed for
consistency with this paper.

The list of categories represents things we still need to find,
whereas the list of words represents the words remaining to
consume.  Thus we start in the state Ws / [S] with all of the in-
put words remaining and the start-state as the only non-
terminal being sought.  The final state represents the situation
in which we have found all of the categories we were looking
for and have consumed all of the input in so doing.  The two
transitions in this space correspond to the top-down expansion
of a grammar rule and the matching of input to the grammar.
We can expand a category that we are looking for by replacing
it with its daughters in a rule.  Similarly, if we are looking for a
word and we have that word at the beginning of the remaining
words, we can consume it.
  
Example:  Suppose we have a very simple grammar for English
sentences containing rules S => NP VP;  NP => Det N; Det =>
the; N => kid; VP => V; V => ran.  Then if we are parsing the
string the kid ran, we have the following sequence of states:
  
   [the, kid, ran] / [S]                       start state    
   [the, kid, ran] / [NP, VP]             expand S => NP VP
   [the, kid, ran] / [Det, N, VP]        expand NP => Det N
   [the, kid, ran] / [the, N, VP]         expand Det => the
   [kid, ran] / [N, VP]                       match the
   [kid, ran] / [kid, VP]                     expand N => kid
   [ran] / [VP]                                   match kid
   [ran] / [V]                                      expand VP => V
   [ran] / [ran]                                   expand V => ran
   [ ] / [ ]                                            match ran

As in speech recognition, we are typically interested in all the
possible parses for a given input string.4  As such, we will need
to do an exhaustive search of the search space (usually known
as all-paths parsing).  Note that a path through this search
space uniquely determines a parse tree.  This tree can either be
constructed from the steps taken during search, or it can be
built online each time a rule is expanded.  Either way, it is the
final parse tree from which the semantics will be computed.
Typically, some degree of lexical lookahead is allowed rather
than just blindly expanding rules top-down hoping to hit upon
the right lexical item; this is achieved by only expanding rules
whose right-hand sides begin with words if the appropriate
word is there in the input.
     Typically, top-down search-based parses exclude certain
forms of problematic grammars from consideration.  The pri-
mary candidates for exclusion are the left-recursive grammars,

                                                                
4 We will not be discussing probabilistic parsing and the pruning that
usually goes along with it in this paper (see [4] for an introduction);
but we should point out that our optimizations also apply to
probabilistic parsers with beam search.



because they introduce infinite loops into the search space.5

For instance, the left-recursive rule N => N PP allows a noun
to be followed by a prepositional phrase; this means that state
Ws / [N | Cs] expands to Ws / [N, PP | Cs], which in turn pro-
duces Ws / [N, PP, PP | Cs] and so on ad infinitum. A grammar
is said to be left recursive if there is a sequence of rules6 A0 =>
A1 …;  A1 => A2 …;  … ; An-1 => An …. Such that A0=An.  So
N => N PP is left recursive with n=1, and the pair A => B C, B
=> A D is left recursive with n=2.  Left recursive grammars
form the limit case of top-down non-determinism, allowing an
infinite number of states to be reachable from another state
without consuming any input.  In general, we define the degree
of ambiguity for a given state to be the number of states that are
reachable from it without consuming any input.  Left recursive
grammars have an infinite degree of ambiguity.  If a grammar is
not left recursive, every state has a finitely bounded degree of
ambiguity.  The complexity of search-based parsing is directly
proportional to the number of states that are reachable from the
initial state.  If every state has a finite degree of ambiguity, at
least that number will be finite.  Our goal is to reduce the num-
ber of states as much as possible without damaging the parse
tree topology beyond our ability to reconstruct the semantics
from it.
      
A SIMPLE CASE
Using the parser from SpeechWorks 6.5, we tested the efficien-
cy of three forms of representing the same grammar.  For the
sake of simplicity, we focused on a very common and easily
understood grammar – that for allowing a sequence of between
1 and N instances of a given non-terminal A.  We considered
three ways such a grammar might be written.7

Disjunctive Form
     S => A;  S => A A;  S => A A A;  S => A A A A; …

Left “Recursive” Form
     S => An;  An => A; An => An-1  A;  An-1 => A; An-1 =>
An-2 A; … ;  A1 => A

Right “Recursive” Form
     S => An;  An => A;  An => A  An-1;  An-1 => A; An-1 =>
A  An-2; …; A1 => A

                                                                
5 Nuance’s grammar formalism and Sun’s Java Speech Grammar
Formalism specification explicitly exclude left recursion from their
grammars.
6 It is straightforward to test a grammar; we test for acyclicity of the
directed graph with an edge from A to B if there is a rule A => B …
in the grammar (see [5] for algorithms).
7 In the SpeechWorks grammar formalism, a grammar allowing from
one to ten instances of non-terminal $A would be written as $A<1-
10>.  This abbreviation is then expanded out to an efficient repre-
sentation.

Theoretical analysis of the degree of ambiguity of these gram-
mars is reflected in their empirical run times.  For both the dis-
junctive and the left “recursive” grammar (it’s not truly recur-
sive – just a finite approximation of a recursive grammar),
parsing a string of As of length m against a grammar that ac-
cepts from 1 to n instances of non-terminal A results in a num-
ber of states on the order of O(n m) to be explored (see [2] or
[5] for a definition of the O notation).   For instance, in the
disjunctive case, there are n states expanded before the first in-
put is consumed, n-1 states expanded at step 2, n-2 states ex-
panded at step 3, and so on up to n-m states expanded after
consuming m inputs, and (n + (n-1) + … + (n-m)) is O(n m).
The left “recursive” case is slightly worse. On the other hand,
the number of states explored in the right “recursive” grammar
is linear in the input, or O(m).  This is because there are at most
two states explored per input token in the right “recursive”
grammar, for a total of 2 + 2 + … + 2 (m times), which is clearly
O(m).8  We do not consider the doubly recursive grammar of
the form A => A A, which allows any parse tree to be gener-
ated; its complexity is exponential (its given by the Catalan
numbers [5]). This case does arise in natural language through
noun compounding, where N => N N, as in [N [N [N [N towel]
[N rack]] [N designer]] [N [N training] [N courses]]].
     Our empirical results support the theoretical analysis.  Us-
ing the SpeechWorks 6.5 parser, we explored grammars ac-
cepting between 1 and n words from a given non-terminal cate-
gory A.  In Figure 1, we show the results for the three gram-
mars above.9  We consider the case where the non-terminal A
expands to a set of 256 words, testing against 5000 randomly
generated test with uniformly distributed lengths. Note that the
quadratic codings take roughly 50 times as long to process in
longer cases.

A REALISTIC CASE: COUNTING
Although the above case was designed for illustrative simplic-
ity, we have encountered similar cases in real applications.  One
example from a real grammar involves agreement between a
keyword and the number of instances.  A precise grammar for
this case is: S => A one; S => A A two; S => A A A three;  ….
The actual example involved a non-trivial expansion of the non-
terminal A, and a number of subcases, but the above grammar
illustrates the point.  As we saw in Figure 1, simply using the
grammar as given above is not particularly efficient.  The obsta-
cle in the way of directly implementing the right recursive ap-
proach above is that we need to count the number of occur-
rences and pick up an agreeing word at the end.  In order to do
this, we can use a grammar of the following form, in which we

                                                                
8 We are not considering the cost of maintaining the states’
stacks; it is common to reduce this constant cost by precom-
piling potential state transitions.  For instance, this is the prin-
ciple behind LL parsing (see [3]).
9 Tests were run on a Dell Notebook with a 400 MHz Pentium II ,
128Mb RAM and 256Kb cache.



represent the count as we proceed down the tree and make sure
we pick up an agreeing element later on.  This is achieved with
the grammar:  S => A S1;  S1 => one;  S1 => A S2; S2 => two;
S2 => A S3; …  The trick is to simply use the non-terminals as
counters.  One problem is that the resulting tree structure is not
what one might expect, but rather looks like [S [A …] [S1 [A …]
[S2 two]]].  In particular, this can cause problems for the
propagation of semantics.  Fortunately, this problem is easily
solved if the grammar formalism allows semantic rules to be at-
tached to the grammar rules, as in standard compilers (see [3]).
For instance, if the word “two” has some distinguished seman-
tic value, this can simply be propagated by the rules for S, S1,
and S2.   In general, this problem can be handled by a technique
known in the programming literature as continuation passing
(see, for example, [6] or [7]).

THE GENERAL CASE
In general, our goal can be seen as simply reducing non-
determinism.  We can apply two kinds of transforms to our
grammars to convert them to equivalent forms: folding and un-
folding, techniques that are widely employed in optimizing
compilers (see [3]).  An unfolding is a particular case of a gen-
eral technique known as partial evaluation in which one rule is
expanded inside of another.  For instance, it would take A => B
C D and C => F that E and produce A => B F that E D.    A
frequent general case of folding is applied when there are multi-
ple rules that share the same prefix.  In particular, we look for
rules with common prefixes and collapse them. For instance, if
we have two rules A => B C D and A => B C E, then every
time we are looking for an A we expand both rules.  We can
fold the repeated sequence B C together with a rule B_C => B
C and replace the two rules above with A => B_C D and A =>
B_C E.  Now only one rule is expanded.  If there is a lot of this
kind of duplication, as in our disjunctive grammar above, the
savings can be significant.
     Folding and unfolding can be used to normalize grammars.
For instance, every grammar can be converted to an equivalent
grammar with no left recursion, the so-called Greibach normal
form, in which every rule begins with a word; that is, is of the
form A => b C1 … Cn, for n ≥ 0.
     Unfortunately, it is impossible to fully determinize all con-
text-free grammars (see [2]); some are intrinsically ambiguous.
Even the simple problem of context-free grammar equivalence is
undecidable [2].  But we can automatically detect a lot of shar-
ing, and unfold an arbitrary finite amount of duplication.

SUMMARY
We described top-down search-based parsing, and described the
measure of ambiguity that directly measures efficiency.  We
demonstrated how much more efficient grammars are that redu-
ce non-determinism, and provide a general mechanism for writ-
ing such grammars and converting existing grammars into more
efficient forms.

REFERENCES
[1] SpeechWorks 6.5 Service Creation Guide.  2000.  Speech-
Works International, Inc.
[2] J. E. Hopcroft, J. D. Ullman.  1979.  Introduction to Auto-
mata Theory, Languages and Computation.  Addison-Wesley.
[3] Aho, A., R. Sethi, and J. D. Ullman.  1988. Compilers:
Principles, Techniques, and Tools. Addison-Wesley.
[4] Jurafsky, D. and J. H. Martin. 2000. Speech and Language
Processing. Prentice Hall.
[5] Cormen, T. H., C. E. Leiserson, and R. L. Rivest.  1990.  In-
troduction to Algorithms.  MIT Press.
[6] Norvig, P.  1992. Paradigms of Artificial Intelligence Pro-
gramming. Morgan-Kaufmann.
[7] Johnson, M.  1995.  Memoization in Top-down Parsing.
Computational Linguistics 21:3, 405-418.

0

50

100

150

200

250

1 2 4 8 16 32
 Input Length

Ti
m

e,
 m

s

Disjunction

Left Recursive

Right Recursive

Figure 1.  Time vs. Input Length for different codings.


