ISCA Archive

http://www.isca-speech.org/archive

6!" International Conference on Spoken
Language Processing (ICSLP 2000)
Beijing, China
October 16-20, 2000

Optimizing BNF Grammar sthrough Sour ce Transformations

Bob Carpenter

Sol Lerner

Roberto Pieraccini

SpeechWorks International, Inc.
http://mwww.speechworks.com/

(bob.carpenter | sol.lerner | roberto.pieraccini) @speechworks.com

ABSTRACT

In this paper we explore the efficiency of various ways of e«
pressing the form and meaning of naturd language utterances as
context-free grammars. We concentrate on the top-down
pasng drategy employed in SpeechWorks 6.5, a draegy
common to many systems. Aswith other search-based parsers,
the key to efficiency isto limit the uncertainty of the parser at
any given stage by reducing non-determinism in the grammar.
Here we study the effects of different expressions of the same
grammar in terms of efficiency. We aso describe a methodolo-
gy for transforming a source grammear into a more efficient e-
pression of the same forms and meanings.

INTRODUCTION

Sophisticated spoken didogue gpplications rely on the ability
to interpret awide range of user utterances. The usud resultis
acomplex naturd language grammar expressing both whet
someone can say to the system and what the system will un-
derstand them to mean. Complex grammars can leed to bottle-
necksin processing if they are not expressed in an efficient
way. This paper concentrates on the notion of parsng as
computation in which the programs are grammars. Aswith
other forms of programming, grammears expressing the same
thing can be encoded in more or less efficient forms. Aswith
mogt other problems in spoken language recognition and under-
standing, the fundamenta principle is the reduction of non-
determinism. In this paper, we will show how this can be ac-
complished in aprincipled way.

We begin with asurvey of the SpeechWorks architecture for
recognition and interpretation. Next, we provide the standard
agorithm for top-down search-based parsing. We briefly dis-
cusstherole of semantic interpretation, and then moveonto a
description of how grammars can be optimized for top-down
search-based parsing. We provide empiricd evidencein terms
of comparative run timesfor Smple, equivaent grammars. We
conclude with adiscussion of genera techniquesfor optimizing
grammars for top-down search-based parsers.

RECOGNITION AND PARSING PASSES

The SpeechWorks 6.5 architecture [1] for extracting meaning
from user utterancesinvolves three passes, including one acous-
tic and atistica language mode pass and two context-free
grammar-based passes.

First Pass Decoding Operates forward to construct aword
graph. Scores are determined by successvely refined acoustic
models and a bigram language modd.

Second Pass: Parsing Operates backwardsto extract parses
for the n-best word string hypotheses that are accepted by a
Specified context-free grammar.

Third Pass: Interpretation Evauates sesmanticsfor parses
generated in the second pass. Grammars are dlowed to re-score
hypotheses on the basis of semantics” Word stringswith
equivaent semantics are conflated before confidence scores are
computed.

Thefind result to be processed by the didog engine is aranked
list of semantic hypothesesin the form of key-vaue pairs.
Subsequent processing can re-score these hypotheses further
using context-specific information, such as user profiles, time
of day, availability of requested information, etc.

CONTEXT-FREE GRAMMARS
The context-free grammar paradigm has been thoroughly stud-
ied in the formal languages and automeata theory literature (for
example, s2e[2] for arange of definitions and theorems). A
context-free grammar is essentidly afinite collection of phrase
gructure rules. More formally, we assume aset Word of
words (often caled terminals), aset NonTerminal of non-
terminals, and afinite set Rule of grammar rules, where each
grammar ruleis of theform (C=> X1 .. Xn) where Cisanon-
termina and each of the Xi is dther anon-termina or aword.
Each grammear definesaset of parsetrees. Theset of trees,
Tree, isdefined to be the least set such tha Word i Treeand
suchthat [CT1..Tn]T Treeif CT NonTerminal,n3 0,
adT1,.,TnT Tree Foratree[CT1..Tn], thenon-
termind Cissaidtobethe root. The yidd of atreeisdefined
by yidd(w) =wif wisaword, and yidd([C T1..Tn] =
yidd(T1) .. yidd(Tn); thisis essentiadly the sequence of words
appearing inthetreeread |eft toright. A parsetreeisatree
every node of which was derived by arule. Moreformaly, a
tree[CT1..Tn] isaparsetreeif (C=>root(T1) ..root(Tn))
isagrammer ruleand T1,..,Tn are themsalves parse trees or

! Thisindudes rgection as a specific instance. Examplesinclude
preferences for dates near a particular target such astoday, rejecting
invalid zip codes, invalid credit card numberswith failed checksums,
€lc.

snglewords. If wetaketheyiddsof dl of the parsetreesfor a
grammar rooted a agiven non-termind C (often caled the start
symboal or root category), we have what isknown as a context-
freelanguage (a paticular kind of formal language).

PARSING

Parsing is essentidly the task of determining for agiven string
of wordswhat the valid parse trees are with that string as yield.
Obvioudy, only stringsin the language will have parsetrees,
and thus parsers can be used to determine whether astringisin
the language of agrammar.

Top-down search-based parsing (also known asrecursive
descent parsing) isawiddy used method for parsing both
computer languages [3] and naturd languages[4]. The primary
difference between computer languages and naturd languagesis
that natura language grammarstypicaly admit ambiguity. A
typica kind of ambiguity involves attachment of modifiers, as
in the contrast between the attachment of the prepositiona
phrasesin thefollowing pair of treesthat yieldsthe string she
saw the boy with the tdlescope: [S[NP she] [VP saw [NP the
[N [N boy] [PP with the tdlescope]]]]]] versus [S[NP she] [VP
[VPsaw [NPthe[N boy]]] [PPwith the telescope]]] (meaningin
the first case that the boy had the telescope and in the second
case, that she did).

The simplest way to define any search-based dgorithmisto
provide the search space (see [4], for example). A search space
is characterized by amapping from an input to a sart state, a
collection of final gates, and a transition function that takes you
from one state to another. For top-down search-based parsing,
the states represent how much of the input string isleft and
which non-terminas need to be found. Suppose we have an
input string Ws that we are trying to parse into atree rooted a
non-termina S (the start symbiol) with respect to agiven
grammar. Each statein the search gpace will be of theform Ws
/ Cswhere Wsis a sequence of words and Csis a sequence of
non-terminas? The search spaceis®

Start State: Ws/[9

Final State: []1/[]

Expand: Ws/[CO|Cg =>Ws/[CL,..Cn|Cq
[if CO=>CL1,...Cnaruleof thegrammar]

Match: [W |Wg /[W |Cg =>Ws/Cs

2 We use the Prolog notation for lists, where[W|W4| isalist whose
first element isW and where Wsisaligt condggting of the remaining
eementsinthelist. For instance, thelistab,c would be represented
as[a|[b]|[c|[]]]] where[] istheempty list containing no ele-
ments. Wewill dsowrite[ab,c] and[a b|[c|[]] for the samelidt.
% SpeechWorks parser actually operates right-to-left rather than
|eft-to-right, but we adopt the usual directional convention here; the
empiricd datafor left and right recursion are dso reversed for
consistency with this paper.

Thelist of categories represents things we il need to find,
whereasthelist of words represents the words remaining to
consume. Thuswe start in the state Ws/ [S] with dl of thein-
put words remaining and the start-state as the only non-
terminal being sought. Thefina state represents the Situation
in which we have found dl of the categories we were looking
for and have consumed all of theinput in so doing. Thetwo
trangitions in this space correspond to the top-down expansion
of agrammar rule and the matching of input to the grammar.
We can expand a category that we are looking for by replacing
it with itsdaughtersinarule. Similarly, if we arelooking for a
word and we have that word a the beginning of the remaining
words, we can consumeit.

Example Supposewe have avery smple grammar for English
sentences containing rules S=>NPVP; NP=>Det N; Det =>
the N =>kid; VP=>V;V =>ran. Thenif weare parsng the
string the kid ran, we have the following sequence of states:

[the, kid, rari] / [S]
[the, kid, ran] / [NP, VF]
[the, kid, ran] / [Det, N, VP

Sart sete
expand S=>NPVP
expand NP=>Det N

[the, kid, ran] / [the, N, VF] expand Det => the
[kid, ran] /[N, VF] metch the

[kid, ran] / [kid, VP expand N => kid
[ran] /[VF] match kid

[ran] /[V] expand VP=>V
[ran] /[ran] expand V =>ran
[1/11] meatch ran

Asin speech recognition, we are typicaly interested in al the
possible parses for agiven input string.* As such, we will need
to do an exhaugtive search of the search space (usudly known
asall-paths parsing). Notethat a path through this search
pace uniquely determines aparsetree. Thistree can either be
constructed from the steps taken during search, or it can be
built online eech time aruleis expanded. Either way, itisthe
final parse tree from which the semantics will be computed.
Typicaly, some degree of lexica lookahead is dlowed rather
than just blindly expanding rules top-down hoping to hit upon
theright lexica item; thisis achieved by only expanding rules
whose right-hand sides begin with wordsiif the gppropriate
word istherein theinput.

Typicdly, top-down search-based parses exclude certain
forms of problematic grammars from consideration. The pri-
mary candidates for excluson are the left-recursive grammars,

* Wewill not be discussing probabilistic parsing and the pruning that
usually goesaong with it in this paper (see[4] for an introduction);
but we should point out that our optimizations also apply to
probabilitic parsers with beam search.

because they introduce infinite loopsinto the search space.”
For ingtance, the left-recursve rule N => N PP dlows anoun
to be followed by aprepositiona phrase; this meansthat sate
Ws/[N | Cq] expandsto Ws/ [N, PP| Cg], which in turn pro-
ducesWs/ [N, PP, PP | Cs] and so on ad infinitum. A grammar
issaid to be |eft recursive if thereis assquence of rules® A0 =>
Al.; A1=>A2..; ..;An1=>An...Suchthat AO=An. SO
N => N PPisleft recursvewith n=1, and thepar A=>B C, B
=> A Disleft recursvewith n=2. Léft recursive grammars
form thelimit case of top-down non-determinism, alowing an
infinite number of statesto be reachable from another state
without consuming any input. In generd, we definethe degree
of ambiguity for a given sate to be the number of satesthat are
reachable from it without consuming any input. Left recursve
grammars have an infinite degree of ambiguity. If agrammer is
not |eft recursive, every state has afinitely bounded degree of
ambiguity. The complexity of search-based parsing is directly
proportiond to the number of statesthat are reachable from the
initid date. If every state has afinite degree of ambiguity, at
least that number will befinite. Our god isto reduce the nunm+
ber of states as much as possible without damaging the parse
tree topology beyond our ability to reconstruct the semantics
fromit.

A SMPLE CASE

Using the parser from SpeechWorks 6.5, we tested the efficien-
cy of three forms of representing the same grammar. For the
sake of amplicity, we focused on avery common and essily
understood grammar — that for dlowing a sequence of between
1 and N ingtances of agiven norn-termina A. We consdered
three ways such agrammar might be written.”

Digunctive Form
S=>A; S=>AA; S=>AAA; S=>AAAA; ...

Left “ Recursve” Form
S=>An, An=>A; An=>An1 A; Anrl=>A; An-l=>
An2A;..; Al1=>A

Right “ Recurdve” Form
S=>An, An=>A; An=>A Anl, Anl=>A; Anl=>
A An-2 .. Al=>A

® Nuance' s grammar formaism and Sun’ s Java Speech Grammar
Formalism specification explicitly exclude left recurson from their
granmas

® |t is straightforward to test agrammar; we test for acydlicity of the
directed graph with an edgefrom A to B if thereisarule A =>B ...
in the grammar (see[5] for dgorithms).

" In the SpeechWorks grammar formalism, agrammer alowing from
one to ten ingtances of non-termina $A would be written as $A<1-
10>. Thisabbreviation isthen expanded out to an efficient repre-
sentation.

Theoretica andyss of the degree of ambiguity of these gram-
marsisreflected in their empirica runtimes. For both the dis-
junctive and the left“ recursive’ grammer (it snot truly recur-
sive— jugt afinite goproximation of arecursive grammar),
parsing astring of Asof length magainst agrammar thet ac-
ceptsfrom 1 to ningtances of non-termind A resultsin anum:
ber of states on the order of O(n m) to be explored (see[2] or
[5] for adefinition of the O notation). For instance, inthe
digunctive case, there are n states expanded before thefirst in-
put is consumed, n-1 states expanded at step 2, n-2 states ex-
panded at step 3, and so on up to -m states expanded after
consuming minputs, and (N + (n-1) + .. + (n-m)) isO(n m).
Theleft“ recursive’ caseisdightly worse. On the other hand,
the number of states explored in theright“ recursve’ granmar
islinear intheinput, or O(m). Thisis becausethere are a most
two states explored per input token in the right“ recursive?’
grammar, for atota of 2+ 2 + ..+ 2 (mtimes), which isclearly
O(m).® We do not consider the doubly recursive grammar of
theform A => A A, which alows any parsetree to be gener-
ated; its complexity is exponentid (its given by the Catalan
numbers[5]). This case does arise in naturd language through
noun compounding, whereN =>N N, asin [N [N [N [N tond]
[N rack]] [N designer]] [N [N training] [N courses]]].

Our empirica results support the theoreticd andysis. Us-
ing the SpeechWorks 6.5 parser, we explored grammars ac-
cepting between 1 and n words from a given non-termind cate-
gory A. InFigure 1, we show the results for the three gram-
marsabove.® We consider the case where the non-termina A
expandsto aset of 256 words, testing against 5000 randomly
generated test with uniformly distributed lengths. Note thet the
quadratic codings take roughly 50 times as long to processin
longer cases.

A REALISTIC CASE: COUNTING

Although the above case was designed for illugtrative Smplic-
ity, we have encountered smilar casesin red applications. One
examplefrom ared grammar involves agreement between a
keyword and the number of instances. A precise grammar for
thiscaseis S=>A ong S=>A Atwo, S=>A A Athreg ...
The actud exampleinvolved a non-trivia expansion of the non-
termind A, and anumber of subcases, but the above grammar
illugtratesthe point. Aswe saw in Figure 1, smply using the
grammear as given aboveisnot particularly efficient. The obsta
cleintheway of directly implementing the right recursive go-
proach aboveis that we need to count the number of occur-
rences and pick up an agreeing word at the end. In order to do
this, we can use agrammear of the following form, in which we

8 Weare not considering the cost of maintaining the states’
stacks; it is common to reduce this constant cost by precom:
piling potential stetetransitions. For instance, thisisthe prin-
ciplebehind LL parsing (see[3]).

° Testswere run on a Dell Notebook with 2400 MHz Pentium |1,
128Mb RAM and 256K b cache.

represent the count as we proceed down the tree and make sure
we pick up an agreeing eement later on. Thisisachieved with
thegrammar: S=>A Sl1; Sl=>o0ne SLl=>A X, 2=>1two;
X =>AS3;...Thetrick isto smply use the non-termindsas
counters. One problem isthat the resulting tree Sructureis not
what one might expect, but rather lookslike[STA . J[SL[A .]
[S2twO]]]. In particular, this can cause problemsfor the
propagetion of semantics. Fortunately, this problem is easily
solved if the grammar formaism alows semantic rulesto be &-
tached to the grammar rules, asin standard compilers (see[3]).
For ingtance, if theword “ two” has some distinguished seman-
tic value, this can smply be propagated by therulesfor S, S1,
and 2. Ingenerd, this problem can be handled by atechnique
known in the programming literature as continuation passing
(see, for example, [6] or [7]).

THE GENERAL CASE

In generd, our god can be seen as Smply reducing non-
determinism. We can apply two kinds of transformsto our
grammars to convert them to equivaent forms: folding and un-
folding, techniques that are widely employed in optimizing
compilers (see[3]). Anunfolding isaparticular case of agen-
erd technique known as partial evaluation in which oneruleis
expanded ingde of another. For ingtance, it would teke A =>B
CDandC=>FthatEand produceA =>B FthatED. A
frequent genera case of folding is goplied when there are multi-
ple rulesthat share the same prefix. In particular, welook for
rules with common prefixes and collgpse them. For ingtance, if
we havetworulesA =>B CD and A => B CE, then every
time we are looking for an A we expand both rules. We can
fold the repeated sequence B C together witharuleB_C=>B
C and replace the two rulesabovewithA =>B_CD and A =>
B_CE. Now only oneruleisexpanded. If thereisalot of this
kind of duplication, asin our digunctive grammar above, the
savings can be significant.

Folding and unfolding can be usad to normdize grammars.
For ingtance, every grammar can be converted to an equivaent
grammar with no left recursion, the so-called Grelbach normal
form, in which every rule beginswith aword; that is, is of the
fomA=>bCl..Cn,forn3 Q.

Unfortunately, it isimpossible to fully determinize al con-
text-free grammars (see [2]); some areintrinsically ambiguous.
Even the smple problem of context-free grammar equivdenceis
undecidable[2]. But we can automaticaly detect alot of shar-
ing, and unfold an arbitrary finite amount of duplication.

SUMMARY

We described top-down search-based parsing, and described the
measure of ambiguity that directly measures efficiency. We
demongtrated how much more efficient grammars are that redu-
ce hon-determiniam, and provide a generd mechanism for writ-
ing such grammars and converting existing grammars into more
efficient forms.

REFERENCES

[1] SpeechWorks 6.5 Service Creation Guide. 2000. Speech-
Works Interntiond, Inc.

[2] J. E. Hoperoft, J. D. Ullman. 1979. Introduction to Auto-
mata Theory, Languages and Computation. Addison-Wedey.
[3] Aho, A., R. Sethi, and J. D. Ullman. 1988. Compilers:
Principles, Techniques, and Tools. Addison-Wedey.

[4] Jurafsky, D. and J. H. Martin. 2000. Speech and Language
Processing. Prentice Hall.

[5] Cormen, T. H., C. E. Leisrson, and R. L. Rivest. 1990. In-
troduction to Algorithms. MIT Press.

[6] Norvig, P. 1992. Paradigns of Artificial Intelligence Pro-
gramming. Morgan-Kaufmann.

[7] Johnson, M. 1995. Memoization in Top-down Parsing.
Computational Linguistics 21:3, 405-418.

250
—®— Disjunction
200
—— |_eft Recursive
7]
g 150 —A— Right Recursive
(O]
€
= 100 /
50
0 ——
1 2 4 8 16 32

Input Length

Fgurel. Timevs. Input Length for different codings.

