Sl() 11

COMPLEXITY REDUCTION IN A LARGE VOCABULARY SPEECH RECOGNIZER

Roberto Pieraccini, Chin-Hui Lee, Egidio Giachint, Lawrence R. Rabiner

Speech Research Department
AT&T Bell Laboratories
Murray Hill, NJ 07974

ABSTRACT

This paper deals with the complexity issue of a large ‘vocabulary high
performance speech recognizer based on continuous density hidden Markov
models. It has been demonstrated that large vocabulary continuous speech
recognizers, based on hidden Markov models of phone-like units, achieve
high word accuracy when highly detailed speech units are used for
characterizing words in the vocabulary. In particular, when context
dependent units are used to represent both intraword and interword phones,
a word accuracy greater-than 95% has been achieved on. speaker-
independent recognition of the standard DARPA Resource Management
task when a word-pair grammar of perplexity 60 is used to constrain the
search, At this level of algorithm complexity, every single detail of the
implementation can have a major impact on the computation requirements.
One way to reduce the complexity of the recognizer is.to-compile the whole
network in such a way that the minimum number of memory accesses is
required. Another substantial reduction of -the complexity is -obtained by
using robust heuristics in the search, such as beam search pruning. Along
with the beam search strategy ‘we used a search strategy, called guided
search, which speeds up performance assessment of the recognizer in the
case where the test string identity is known. Particular care has been taken
in making the algorithmic architecture and the data structures suitable for
vectorization and concurrency.

1. Introduction

Most large vocabulary speech recognition systems are implemented as
network searches for the best path through a large, but finite grid. The best
path generally corresponds to the most likely sequence of words as
constrained by a finite state network which implements the grammar or
syntactic component of the system, When the number of basic speech (sub-
word) units is small (i.e., on the order of 50-200 units), the details of
implementation of the search strategy don’t have a major impact on the
overall complexity of the recognition task and experimental tuning and
assessment of different training strategies and overall performance of the
recognizer is relatively straightforward. However, when highly detailed
(context dependent) speech units are used, including both intraword and
interword context dependent units, the complexity of the overall
implementation often increases quadratically with the number of basic units,
and corrcspondmgly the details of how the network search is implemented
become of major importance in accessing the suitability of various network
structures. When this is the case, a full search implementation of the speech
recognition algorithm is totally impractical, if not impossible. For a task like
the DARPA Resource Management Task (RMT), the number of grid points
to be examined is on the order of tens of millions while the number of
connections between grid points ranges in the hundreds of millions. An
effective solution to this problem consists of performing an intelligent
search through the grid and using reasonable but effective heuristics to
eliminate unlikely path candidates from consideration. There are several
ways for reducing the computational cost of a search for the most likely
path through a finite but large grid of points. For the size of the task we
refer to in this paper (1000 word vocabulary) a beam search [1] strategy is
generally the one used. Although the algorithm is simple and
straightforward to implement in theory, in practice there are a number of
factors which strongly affect the overall efficiency of the implementation. It

4+ Now with CSELT, Torino, Italy

- 729 -

is the purpose of this paper to discuss these factors and show tiow proper
design lead to an efficient and accurate ‘implementation of ‘a large
vocabulary recognition system. .

The resulting recognizer structure has been-designed ' to take advamage of
the capabilities of a vectorized concurrent processor (an Alliant FX/2800) . -
which consists of a cluster of up to 28 computing elements (CE's) that can
execute code in vector concurrent mode. Of course, for taking advantage of
the vector capabilities of each processor, the'code must be structured so that
the heart of the computation is performed in such a way that it can be
distributed to the concurrent processors and can readily be performed in
vector mode. Thus the algorithms must be irnplcménted as a sequence of
simple vector operations which are iteratively applied to a set of computing
elements sharing the same data structure. Furthermore the size of the data
structure, required by each CE for computation, must be small enough to fit -
within a local CE cache so that the inherent speed of -the processor is not
compromised by excessive memory faults ‘outside the -cache. In our
implementation of the speech recognizer all the states are sequentially
allocated in the same order as they appear in the HMM chains that represent
the words. Given the simple HMM structure used 1o represent the units (i.e.
three state left-to-right models without - state jumps), the local path
optimization in the Viterbi decoding has to be performed between states that
are stored in consecutive locations of the state vector, except for those states
that are at the boundaries of word segments. In this way, the decoding
problem is split into two sub-problems, namely processing of internal word
segment states and processing of word boundary states. The method of path
extension, during the Viterbi decoding, -involving. boundary states that
coincide with the beginning and end of a word model, is driven by the
syntactic constraints used in the recognition system as well as by the
phonological constraints imposed at the word junction level. The check of
all the connection conditions (syntactic and phonological) for every word
beginning and word ending state is very expensive computationally. Hence
we use a compiled form of the list of possible connections between
boundary states. This gives a significantly more efficient 1mp1ememauon of
the recognition algorithm.

A final issue in the recogmzer implementation concerns the use of a guided
search algorithm which is used only for evaluation and assessment of
different recognition and training strategies. “When the spoken sentence is
known, as is the case during the phase of development and performance
evaluation of a speech recognition system, the beam search threshold can be
based on the best path obtained through a forced alignment of the input
speech with the HMM representation of the true sentence. This allows a
further reduction of the search space, since.the beam search threshold will
be greatly reduced whenever the correct path is the same as the best path
found by the forced alignment.

2. The Decoding Algorithm

The class of algorithms we are dxscussmg in t.hxs -paper is based on the

ption that the language used in the apphcauon may be expressed as a
regular grammar. Although the algorithm: may be modified in order to
account for context-free representation of the language {2] we assume the
regularity of the language in the rest of the paper. The grammar, or syntactic
component of the system, defines all the possible ways of combining words
in order to form a sentence. If the grammar is regular, it can be represented
as a finite state network (FSN), hence in terms of arcs and nodes. Each arc
corresponds to a word of the vocabulary. The vocabulary for the DARPA

CH2977-7/91/0000-0729 $1.00 © 1991 IEEE

RMT consists of 991 different words. A simple FSN that represents the so-
called no grammar case consists of a network that allows any of the 991
words to follow any other word in the vocabulary, with optional pauses at
the beginning and end of the sentence and between words. Silence, for the
purpose of decoding, is treated as a vocabulary word represented by a single
state HMM. A more constraining grammar (perplexity 60) is the one known
as the word pair grammar, and consists of a finite list of words which can
follow each word of the vocabulary. Of course, the word pair grammar is
represented by a far more complex FSN than that used for the no grammar
case. In this case the basic number of arcs representing words (i.e. 991) is
still the same, but each word ending is connected to the set of possible word
beginnings through a number of null arcs (referred to as connections in the
rest of the paper) that is approximately given by the product of the
perplexity and the number of word arcs (60x991 = 59,460). Moreover,
interword pauses must be taken into account, increasing the number of
connections. An additional complication arises when interword units are
used. Explicit modeling of interword coarticulation phenomena lead to a
substantial increase in the accuracy of the speech recognizer [3,4,5,6] The
assumption is made that coarticulation between two consecutive words
affects only the boundary phones. The central portion of words, that is not
supposed to be affected by the coarticulation (body) is represented by a
linear sequence of context dependent phone like units (PLU’s), The first
(head) and the last (tail) phones of words are replaced by a list of possible
context dependent PLU’s that account for all the possible phonetic contexts
at the beginning and at the end of the word. It should be noted that words
composed of two phones and words composed of one phone are special
cases of this kind of model. A two phone word does not have a body; hence
all the elements of its head merge with all the elements of its tail. The
concept of word head and tail cannot be extended to one phone words.
Depending on the neighboring words, a single phone word consists of a
particular context dependent interword unit. The connections between the
tail of a word and the head of a possibly following word are based on a
precomputed connection matrix CONN(ph;,ph;) whose generic element
assumes the logic value true if unit ph; may follow unit pk; in the
conjunction of two consecutive words. Fig.1 shows an example of the
connections between two consecutive words, where a phone x in the left
context y and right context z is represented as y_x_z and the symbol $ refers
to a generic context (i.e. no context dependency).

$ aa s

Figure 1. Example cﬁlt# interword connections
Since silence must be always put as an option between two consecutive
words, a silence state is included in the connections. It should be noted that
there may be multiple connections between two words, i.e. there is not a
unique tail-head connection between two consecutive words and, moreover,
a word tail may be connected to many different word heads and viceversa,
For instance, in the example of Fig.1, silence is connected with two units:
one of them ($_aa_$) can be followed by silence, while the other ($_aa_h#)
must be followed by silence (reresented by the symbol h#). Hence it is clear
how the introduction of an explicit model accounting for interword
coarticulation greatly increases the complexity of the speech recognizer by
increasing the number of connections between the words. The decoding
(Viterbi decoding) is based on the explicit representation, through a graph
(decoding graph), of all the the possible temporal evolutions of the acoustic
patterns in terms of HMM states. The states of the decoding graph are
obtained by substituting every arc of the FSN that represents the language
with the corresponding word model in terms of subword unit HMM’s.
There are several kinds of state connections. There are connections
(structural connections) inside word model segments (i.e. a bodies, tails,
and heads), that result from the structure of the HMM's. In our case each
state §; at time ! is connected only with the same state S; at time ¢+1 and
with the following state S, j+1 at time t+1. Internal states (i.e. states that are
not at the boundary of a word segment) are connected only through

structural connections. The other two kinds of connections deal only with
boundary states. There are connections among word model segments, i.e.
between the heads of a word and its body, and between the body and the
tails of a word (inner connections), that result from the structure of the word
models, and there are connection among the tails of a word and the head of
a possibly following word (outer connections). While the number of
structural and inner connections is relatively small, the number of outer
connections is generally very large and increases with the complexity of the
language and with the complexity of the interword connections. Viterbi
decoding is used for detecting, in the decoding graphs, the sequence of
states that gives the maximum likelihood for the observation of the
sequence of input patterns (the system we refer to in this paper uses a 38
dimensional input pattem, consisting of the cepstrum, delta cepstrum,
delta-delta cepstrum, energy and delta energy, computed every 10 msec).
The decoding equation for a graph node representing state S; at timé ¢ can be
written as:
G(i.t)=ir:11a§ GUu-1)+1GE 1S

where N, is the overall number of states in the decoding graph, G (i) is the
accumulated score of the best path reaching state §; at time 1, I (%, | S;) is the
local likelihood for state §; given the observation vector X, at time ¢ (note
that there are no transition probabilities in the equation since we assume
equiprobable transitions in the HMM’s). There are clearly two factors
affecting the complexity of the recognizer. The first one is the number of
combinatorics or the bookkeeping factor and it depends on the number of
connections between states in the decoding graph. The second factor is the
computation of the local likelihood. The amount of computation needed for
computing the local likelihood depends on the kind of mode! we use and on
the number of different states we have in the decoding graph. In the rest of
the paper we refer to mixture density HMM's; hence the local likelihood is
computed as:

M;
I 15)=1nF Win NG, fims Cin)
mx]
where N(X, [1;u,Cin) represents a multivariate Gaussian density with mean
vector [T, and diagonal covariance matrix C;,, and w;, are the mixture
weights for state §; (the maximum number, M;, of mixture components is 16
in the experiments described in the rest of the paper).

The maximization operation shown in the decoding equation must be done
for all the states in the decoding graph that may precede the current state S;.
Of course, if the state is an internal state, the regularity of the structural
connections makes the bookkeeping very simple, For inner connections, the
maximization is also quite straightforward, since, for every word model, we
build a list of the boundary states of the body, of the heads and of the tails.
The bookkeeping becomes mare complicated for outer connections as both
the linguistic constraints (e.g. word pairs) and coarticulation constraints
(interword units) must be taken into account. Bookkeeping can be done by
interpreting, at each time, the linguistic and coarticulation information. For
instance, taking into account word pairs, for each of the 991 words we have
to check whether each one of the possibly preceding 991 words is in the
word pair list, resulting in 982,081 operations for every frame of input
speech. Moreover, for each pair of words in the word pair list, all the
possible tail-head connections must be checked using the CONN matrix.
Interpreted decoding generally requires an enormous number of memory
accesses, and therefore this leads to a poorly performing recognizer. A
solution to this problem consists of compiling, in a single representation,
both linguistic and coarticulation constraints, and generating, for each word
boundary state, a list of all the word boundary states it is connected to by
outer connections.

2.1 Allocation of Static and Dynamic Information

A vectorized compiled representation of the decoding graph is necessary for
taking advantage of the parallel and vectorized architecture of the computer
used for the recognition experiments. A single HMM state constitutes a
data structure that is simple enough to be used as a basic element for
vectorized processing. Since there is no difference in the processing of
HMM states with regard to their position within the model (unless they are
boundary states), the operations performed on single states can be easily
expressed in vectorized form. Hence a vector is the ideal structure for

- 730 -

storing the information related to the states in the. decoding graph.
Depending on the size of the task, the algorithm can be implemented with
static or dynamic state ‘allocation. In the static memory case, when the
memory needed to allocate all the states of the decoding ‘network is
sufficiently small, each state is assigned an address within the state vector at
the beginning of the program, and the address remains constant. When the
number of states of the decoding network is very large, hence the amount of
memory needed for static allocation is too big for practical implementation,
a different solution is required to avoid memory faults within individual
processors, The solution to this problem is ‘to allocate memory only for
those states that are active at any particular time, i.e. stack the "alive" nodes
within a small memory stack. The address of a state within the state vector
is therefore not predictable a priori. Hence a more sophisticated addressing
scheme is needed to perform the decoding. This scheme, unfortunately, is
not well suited to a parallel and vectorized implementation. The amount of
memory needed in the DARPA resource management task, both in the no
grammar case and with the word pair grammar, permits a static state
allocation. However for more complex tasks (e.g. vocabularies of the order
of 10,000 words) a dynamic allocation of states should be implemented. All
the states of the decoding graph are stored sequentially in a state vector the
elements of which correspond to HMM states in the word representation.
Hence every element of the vector has to be identified as a state of a
particular HMM. The information needed for this identification is the unit
number (UNTT(),i=1,N,) and the state number (STATE(),i=1,N,) within
the unit model it belongs to. An additional vector, called:A(f), is used o
control the transition between consecutive ‘states. Since we do not use
transition probabilities in the likelihood computation, A(f) can be either 0 or
~o0, depending on whether the transition from that state to the next state in
the vector is allowed or-not. A (i) is used just to prevent the propagation of
the score from the last state of a piece of a word model (head, tail or body)
to the first state of the following part of the word model in the vector, since
the score propagation among different segments must be fully controlled by
the inner and outer connection information. The use of the A (i) vector
eliminates the need for checking at each decoding step whether the state is
an internal or boundary state, allowing the decoding to be performed as an
uninterrupted flow of vectorial operations. More information must be stored
for handling both inner and outer connections, like the number of heads and
tails of each word, the address, within the state vector, of the boundary
states of each body, head, and tail, and the list of outer connections for each
tail of each word. The dynamic information related to active states in the
state vector must be stored at each step of the decoding algorithm. This
information includes: the current score (SCORE), the pointer to the previous
lexical item (BPO) on the best path reaching that state at the current time,
and a time marker (BEG) indicating when the current best path entered into
the current lexical item. Due to the Markovian property of the models, the
decoding process needs only the score and the pointers relative to the last
processed frame. Hence the three arrays are doubled in size, the OLD
version of each array is relative to the previously processed frame, while the
NEW version is relative to the current frame. At the end of the processing
for the current frame, the pointers NEW and OLD are flipped. In order to
be able to backtrack the best path from the last frame to the beginning of the
sentence and decode the recognized sequence of words, we have to store the
back pointers and the time markers along the whole decoding process. The
amount of memory needed for keeping this information is not negligible as
this information must be recorded for every arc of the FSN and for every
frame of the decoded sentence. A possible solution to reduce the amount of
memory for the backtracking information consists of implementing a partial
backtracking strategy [7,8] In the partial backtracking, the backpointers are
checked during the decoding in order to find some past node that is the only
ancestor of all the currently active nodes (immortal node). Hence a partial
section of the global optimal path can be tracked back from the current
immortal node to a previously detected immortal node, and all the
backtracking information in the time segment between the two immortal
nodes can be deleted, making memory available for new data. The partial
backtracking strategy is advisable for a real time, continuously running,
implementation of the decoding algorithm, where we do not know in
advance the maximum duration of sentences. Since in the version of the
system used for speech recognizer performance evaluation we know the
maximum duration of any sentence and the memory needed for the
backtracking information is within the capability of the computers we use,

- 731

the - partial backuackmg strategy was not used in this version of the
recognizer.

2.2 Organization of the Beam Search

As stated in the introduction, beam search is a powerful heuristic that allows
the search to focus around the locally best path and:to disregard unlikely
solutions. With a proper setting of the beam search threshold, the
probability of losing the globally best path can be made small enough so
that the performance with a finite beam approaches the performance of a full
search algorithm. For a beam search to be efficient, the bookeeping: must be

performed in such a way to avoid computation on nodes that ‘have been

pruned in previous stages of the search. This generally implies.a
reorganization of the search based on a list of currently. active nodes
LST_A(i), i=1,N,, that must be updated at-the end of the -decoding of each
single frame of input speech. In this way, for a decoding step, only N
nodes are explored. As one of the most computationally expensive parts of
the decoding involves the propagation of score through' outer connections,
an additional reorganization of the boundary states ‘was performed by -
updating, at each time frame, a list of active words LST W(z) i=1,Noaers
i.e. those words that have at least one tail end-state active, among their tail
segments. Hence only outer connections originating from active words are
used in the score propagation. For ‘enhancing:the parallel structure of the
algorithm, the entire decoding process was broken down-into 5 sequential
steps. A first module performs the dynamic programming optimization for
all the active states in the state vector. A second module performs path
expansion at inner connections while a third module takes care of the outer
connections. A fourth module performs the beam search: pruning and
updates both LST_A and LST_W. Finally, the last module, computes the
local likelihood for each active state and adds it to. the corresponding score.
The code for the five modules has been optimized both for vectorization and
concurrency. The only stage that cannot be fully executed in concurrency is
the list updating, due 1o the sequential nature of the list structures, In the
current version of the recognizer, partial lists are concurrently updated at
each processor, and eventually combined into a single list. -

3. Guided Search

We developed a particularly efficient version of the xecogmzcr suited only
for experimental assessment of.‘speech recognition accuracy. When
assessing performance on a test databa’sc,ﬂt.hc correct string of words (i.e.
the word string actually spoken) is known a priori for every sentence. The
forced alignment of the test speech, with the ‘network representing the
actually spoken sentence, produces a path (correct path) whose frame-by-
frame score can be used to further reduce the size of the search space. The
concept behind the guided search is that the globally best path will have a
final score that cannot be inferior to the global score of the correct path.
This condition, of course, holds only for ‘the global scores and not for the
partial scores along the globally best path and the correct path, It may
happen that the globally best path drops:below the score of the correct path
at a certain point in the search (path inversion), eventually attaining a better
score later in the search. However, the: locally best score obtained during
the forced alignment. may be used to estimate a beam search threshold that
reduces, to a minimum, the possibility -of missing the giobally best path
during a path inversion. Although the parameters of the guided search were
carefully tuned, estimation of the recognition perfonnancc is generally
slightly biased towards a smaller error rate, as shown in the following
section. However, guided search can still - be ‘used to speed up the
experimental tuning of a system.

4. Performance of the Recognizer

Timing experiments have been performed during the development of the
algorithm to assess the efficiency of the entire speech recognition system.
All the performance scores reported in this section were obtained during the
recognition of several sentences using a phone set of 1769 subword units
with word pair constraints. The guided search strategy was used in all the
experiments. The experiments were run.on an Alliant FX/2800 using a
cluster of 6 processors working in concurrency. Table 1 shows the average
time (in seconds) per sentence, and average time per decoded frame, in 3
different versions of the recognizer. . In REC1 all the outer connections are
explored at every frame, in REC2 only connections originating from active

words are explored, and REC3 has the same features as REC2, but uses a
compiled version of the outer connections.

Recognizer | Time per | Time per
sentence frame
REC1 222 0.7
REC2 130 04
REC3 25 0.08

TABLE 1. Average time (in seconds) per sentence (TPS) and per frame
(TPF) in three different implementations of the recognizer

The difference in computing time between REC1 and REC3 is almost one
order of magnitude. The complexity is almost halved by the introduction of
the list of active words, while the compilation of the outer connections
reduces by a factor of 5 the complexity. Table 2 shows the time breakdown
for the five decoding modules described above when REC3 is used. The
numbers shown are the percentage of time spent in each module during the
decoding of one frame.

Operation Time %
Internal states 14.8
Inner connections 11.8
Outer connections 5.0
List updating 13.2
Local likelihood 552

TABLE 2. Percentage of time spent in each module during the decoding of
one frame

The table shows that the local likelihood computation accounts for more
than 55% of the total decoding time and it is followed by the dynamic
programming optimization on the active states, the list updating, and the
propagation of scores for inner connections. The propagation of scores to
outer connections takes only 5% of the entire computation. In fact, even
though the number of potential connections is very large, only a small
fraction of them are actually explored at each frame. .

Fig. 2 shows the efficiency of the whole system (REC3) in terms of
concurrency. The figure shows the average decoding time per frame as a
function of the number of computing elements used to execute the code.
The performance shown by the solid line is that obtained with the

recognizer REC3, while the dotted line is the theoretical curve % The

figure shows that the code performance is very close to that of fully
concurrent code.

Number of CEs

Figure 2, CPU time per frame (seconds) versus number of CEs in REC3
(solid line) and in the theoretical case (dotted line).

Finally Table 3 shows the word accuracy for different values of the beam
search threshold and when using guided search (GS), along with the average
percentage of search space that is explored (the search space is 49,210 states
for one frame of speech), and the average CPU time for decoding one frame
of speech.

Using a guided search the complexity is reduced more than three times, with
a small bias in the word accuracy estimation. In a real recognition situation,
when guided search cannot be used, the computing time, with this
configuration of the recognizer, rises up to 0.25 sec per frame,
corresponding to about 80 sec average per sentence and 25 times real time.

Beam Search Word seconds percent of
Threshold Accuracy | per frame | search space
GS 94.9 0.08 0.8
150 93.0 0.16 32
175 94.1 0.21 41
200 94.4 0.25 6.6
225 94.4 031 8.8
250 94.4 0.37 11.3
400 94.4 0.79 30.0
TABLE 3. Performance with different beam search thresholds and with
guided search

5. Conclusions

This paper provides a detailed description of all aspects of the
implementation of a large vocabulary speaker independent, continuous
speech recognizer which is used as a tool for the development of recognition
algorithms based on hidden Markov models and Viterbi decoding. The
complexity of HMM recognizers is greatly increased by the introduction of
detailed context dependent units for representing interword coarticulation.
A vectorized representation of the data structures involved in the decoding
process, along with compilation of the connection information among
temporally consecutive words and an efficient implementation of the beam
search pruning, has led to a speed up of the algorithm of about one order of
magnitude. A guided search can be used during a tuning phase for obtaining
a speed up of more than three times. An average recognition time of about
25 seconds per sentence (on the computer configuration used in the
experiments), although far from real time, allows us to perform a series of
training experiments and to tune the recognition system parameters in order
to obtain high word accuracy on complex recognition tasks such as the
DARPA resource management.

REFERENCES

[1] B. Lowerre, D. R. Reddy, "The HARPY speech understanding system,”
in Trends in Speech Recognition (Lea, W. ed.), 340-346. Prentice-Hall Inc.,
New York.

[2] H. Ney, "Dynamic Programming Speech Recognition Using a Context-
free Grammar,” Proc, ICASSP 87, pp. 69-72, Dallas, Texas, April 1987.

[31C. H. Lee, E. Giachin, L. R. Rabiner, R. Pieraccini, and A. E.
Rosenberg, “Improved acoustic modeling for continuous speech
recognition," Proc. DARPA Speech and Natural Language Workshop,
Somerset, PA, June 1990.

[4] X. Huang, F. Alleva, S. Hayamizu, H. W. Hon, M. Y. Hwang, K. F. Lee,
"Improved Hidden Markov Modeling for Speaker-Independent Continuous
Speech Recognition,” Proc. DARPA Speech and Natural Language
Workshop, Somerset, PA, June 1990.

[5]1 H. Murveit, M. Weintraub, M. Cohen, "Training Set Issues in SRI's
DECIPHER Speech Recognition System," Proc. DARPA Speech and
Natural Language Workshop, Somerset, PA, June 1990.

[6]D. B., Paul "The Lincoln Tied-Mixture HMM Continuous Speech
Recognizer,” Proc. DARPA Speech and Natural Language Workshop,
Somerset, PA, June 1990.

[71]J. C. Spohrer, P. F. Brown, P. H. Hochschild, and J. K. Baker, "Partial
traceback in continuous speech recognition,” Proc. IEEE Int Cong.
Cybernetics and Society, Boston (MA), 1980.

[8) M. Cravero, L. Fissore, R. Pieraccini, C. Scagliola, "Syntax driven
recognition of connected words by Markov models,” Proc. of ICASSP 1984,
San Diego, (CA), 1984,

- 732 -

